Models of triple-stranded polynucleotides with optimised stereochemistry Struther Arnott, P.J. Bond, 1 Erik Selsing, 2 and P.J. C. Smith Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA Received 28 May 1976 #### ABSTRACT Detailed models are presented for the triple-stranded polynucleotide helices of $poly(U) \cdot poly(A) \cdot poly(U)$ (two forms), $poly(U) \cdot poly(A) \cdot poly(U)$, $poly(U) \cdot poly(D) \cdot poly(D)$, $poly(D) \cdot poly(D) \cdot poly(D) \cdot poly(D)$, $poly(D) \cdot poly(D) \cdot poly(D) \cdot poly(D)$. The models were generated using a computerized, linked-atom procedure which preserves standard bond lengths, bond angles and sugar ring conformations, constrains the helices to have the pitches and symmetries observed in X-ray diffraction experiments, and optimises the non-bonded interatomic contacts including hydrogen bonds. The possible biological significance of such complexes is discussed. # INTRODUCTION Triple-stranded complexes containing three coaxial helical chains connected by hydrogen-bonded bases can be formed from a variety of simple polynucleotides. In cases like poly d(T) poly $d(A) \cdot poly d(T)$ two of the chains are hydrogen-bonded in the Watson-Crick manner: therefore local segments of a native DNA could participate in such complexes and it is of some interest to determine the effect of involving a third strand with such a duplex. Since, in the case mentioned, the second poly d(T) chain cannot be involved in Watson-Crick pairing, and in other cases like $poly(I) \cdot poly(A) \cdot poly(I)$ none of basepairings can be of the standard kind, it is also of interest to determine the conformational consequences of having unusual base-base hydrogen bonds. Although these complexes are, in many cases, susceptible to the same general methods of structure analysis as the more familiar double-stranded forms, several factors combine to make the extension of the technique problematic. Earlier determinations of nucleic acid structures^{3,4} have used a linked-atom description of the structure, that is, one in which bond lengths and angles are fixed and only the bond torsion angles are treated as explicit variables. This reduction of the number of parameters in the description allows the optimisation of the fit between the predicted X-ray diffraction of the model and the quite limited number of observed data. In triplestranded complexes, however, there no longer exists the simplification allowed by the symmetry between the strands of a double helix: the three strands each have different base hydrogen bonds and one cannot assume even that the sugar-phosphate backbones of the two strands joined by Watson-Crick base pairing have the same conformation. Coupled with this three-fold increase in the number of parameters to be determined is a scarcity of quantifiable X-ray diffraction data, caused by limited ordering in the samples studied. To overcome these problems we must increasingly use stereochemical information obtained from simpler systems. One well-established and powerful constraint of this sort is the avoidance, where possible, of over-short interatomic distances between non-bonded atoms. This paper describes the use of a computer program to use this sort of information to predict probable molecular structures with standard bond lengths and angles for six triple-stranded polynucleotides. All but one of these have provided sufficient X-ray data for earlier analyses, thus affording a basis for assessment of the present method. Since nucleic acid systems of current biological interest are more complicated than the duplex structures that have received most attention heretofore it may be that the new strategy we will describe could form the basis for accurate modelling of those complex systems. ### METHOD AND PROCEDURE The linked-atom least-squares procedure (LALS) has been described in detail earlier. 3,4,5,6,7 Briefly, it involves analytic minimisation of $$\Phi = \sum_{j} k_{j} \delta_{j}^{2} + \sum_{h} \lambda_{h} G_{h}$$ (1) The first summation includes several classes of terms which are, together, to be minimised. The k_j are weights and the δ_j are differences between model values and standard (i.e. known or observed) values of various structural features. In the case of interatomic contacts (a contact being a separation *less* than the standard value), the standard values and weights are derived in advance by fitting a non-bonded van der Waals energy function. Where hydrogen bonds are known or suspected to exist, the standard value for calculating δ_j is reduced to the known length of the hydrogen bond, whilst the original standard value is still used for determining whether the contact exists. These terms, therefore, tend to drive apart atoms which are too close and to make hydrogen bonds close to standard lengths. Other terms in the first summation include recognition of the known relationship that the angle (γ) between the helix axis and the normal to the plane of the bases in a polynucleotide bears to the projected height (h) of a residue on the helix axis. 10 The parameters varied in order to minimise Φ are, in the present case, primarily single bond torsion angles. There are also some geometrical parameters of no immediate physical significance needed to orient and position the structure and to allow sufficient flexibility to the hydrogen bonds between the strands. The second summation in equation 1 is of linear Lagrange constraints (G_h = 0) on the parameters necessary to maintain the observed helical symmetry. The λ_i are undetermined multipliers. In each minimisation, consequently, 32 parameters were varied, upon which 27 constraints were applied of which 9 were linearly dependent on others, leaving 14 net degrees of freedom. The number of data used to determine these in this type of minimisation is not an obviously obtainable number, since one has to arbitrarily decide whether the lack of short contacts constitutes data, and if so, at what interatomic separation such data cease to be significant. The number of non-zero contributions to equation 1 was typically around 100 to 300, but it must be stressed that conventional considerations concerning the data-to-parameter ratio are not necessarily valid in this case, and a more appropriate value for 'number of data', bearing in mind the desirability of a balanced distribution of $\delta_{\it i}$, might be several times greater. Six complexes, listed in table 1, were analysed in the present study. Five of these have been investigated previously using other data and methods 3,4,8,9 and have been shown to adopt similar hydrogen-bonding schemes, in which the third strand occupies what would be the major groove of an A-type polynucleotide duplex, and participates in Hoogsteen-type interactions with one of the two Watson-Crick linked strands (Figure 1). This, and the standard 2 -endo sugar ring conformation observed in all polynucleotides of the 4 genus, were assumed for the present study. Each of the six can be oriented sufficiently to show X-ray diffraction which yields the helix symmetry and the helix pitch, and hence the turn angle $^{(t)}$ and projected residue height $^{(h)}$. (Table 1). Table I: properties of the systems studied. | Complex | Abbreviation | Helix
Symmetry | Pitch
(nm) | Turn angle
t (°) | Residue height h (nm) | Base skew
γ(°) | |---------------------------------|--------------|-------------------|---------------|---------------------|-----------------------|-------------------| | Poly(U) · poly(A) · poly(U) | UAU-11 | 111 | 3.34 | 32.7 | 0.304 | 12.0 | | Poly(U) · poly(A) · poly(U) | UAU-12 | 121 | 3.65 | 30.0 | 0.304 | 12.0 | | Poly(U)· poly d(A)· poly(U) | U A DU | 1111 | 3.34 | 32.7 | 0.304 | 12.0 | | Poly d(C). poly d(I). poly d(C) | dCdIdC | 111 | 3.48 | 32.7 | 0.316 | 10.0 | | Poly d(T). poly d(A). poly d(T) | TDAbTb | 121 | 3.91 | 30.0 | 0.326 | 8.5 | | Poly(I)·
poly(A)·
poly(I) | IAI | 121 | 3.95 | 32.7 | 0.329 | 8.0 | <u>Figure 1</u>: Triplex hydrogen-bonding schemes: (a) pyrimidine: <u>purine:pyrimidine</u>, (b) poly(I)·poly(A)·poly(I). For each complex, six torsion angles in each strand were varied (Figure 2). Five of these define the sugar-phosphate backbone conformation, and the sixth is about the sugar-base bond. Figure 2: Atom and conformation angle nomenclature for a nucleotide residue. It should be noted that the above nomenclature we use differs from that in recent work, to correspond with that in the earlier studies considered in this paper. The conformation angles shown are defined as ``` \omega = \theta [C4-C3-O1-P1] \phi = \theta [C3-O1-P1-O4] \psi = \theta [O1-P1-O4-C5] \theta = \theta [P1-O4-C5-C4] \xi = \theta [O4-C5-C4-C3] \chi = \theta [C2-C1-N-(C2pyr,C4pur)] ``` ### RESULTS AND DISCUSSION In Table II are shown the values obtained for the varied torsion angles, and the differences between these and those obtained in the earlier studies. Although there are in some cases moderately large differences, it must be realised that the earlier structures were derived from quite limited numbers of data, supplemented (in most cases) by only statistical information concerning probable chain conformation angles. Table III lists the hydrogen-bond lengths of the present models: none of these is exceptional. Table IV shows the remaining short contacts in the present models. These are the interatomic distances between pairs of atoms not bonded (or hydrogen-bonded) to each other or to a common third atom, more than 0.02nm less than the sum of the | Table II: | _varied | confo | rmation | angles | (de | rees) | and di | fferen | es fr | om ear | lier s | tudies | |-----------|---------|-------|---------|--------|-----|-------|--------|--------|-------|--------|--------|--------| | Complex | ω | ф | ψ | θ | ξ | х | Δω | Δф | Δψ | Δθ | Δξ | ΔΧ | | poly(U)· | -152 | -74 | - 55 | 173 | 47 | 83 | 13 | -15 | 4 | -16 | 3 | - 3 | | poly(A)· | -156 | - 69 | -76 | 176 | 64 | 89 | -2 | 9 | 16 | - 4 | -16 | 13 | | poly(U) | -149 | -76 | -63 | 174 | 53 | 83 | -25 | 29 | - 23 | 33 | 2 | 17 | | poly(U)· | -156 | -75 | - 28 | 171 | 24 | 87 | 16 | -12 | 6 | 0 | - 3 | 4 | | poly(A)· | -163 | - 67 | - 66 | -179 | 53 | 91 | II 5 | -16 | 22 | 4 | - 23 | 12 | | poly(U) | -149 | -83 | - 40 | 167 | 37 | 85 | - 5 | - 6 | -10 | 12 | 3 | 10 | | poly(U)· | -152 | -74 | - 57 | 172 | 49 | 83 | 15 | -18 | 2 | -16 | 7 | -1 | | poly(dA). | -160 | - 67 | - 71 | 178 | 58 | 92 | -6 | 9 | 22 | - 3 | - 23 | 17 | | poly(U) | -149 | -76 | -62 | 174 | 53 | 84 | -31 | 24 | - 4 | 32 | -13 | -21 | | poly(dC)· | -155 | -70 | - 61 | 176 | 51 | 83 | 11 | | | | | | | poly(dI)· | -151 | -72 | -82 | 173 | 72 | 84 | ll . | | | | | | | poly(dC) | -153 | -72 | -65 | 178 | 54 | 84 | ll . | | | | | | | poly(dT)· | -156 | -74 | -46 | 174 | 39 | 86 | 12 | -13 | 17 | -12 | - 8 | - 3 | | poly(dA)· | -161 | -68 | -66 | 180 | 55 | 91 | 3 | - 2 | -16 | 1 | 15 | -1 | | poly(dT) | -160 | -77 | -53 | 172 | 47 | 85 | -5 | -1- | - 5 | Ō | 4 | -1 | | poly(I). | -152 | -77 | - 57 | 171 | 52 | 84 | 8 | -11 | 16 | -12 | -11 | 4 | | poly(A)· | -154 | - 75 | -62 | 173 | 55 | 85 | 6 | - 9 | 11 | -10 | - 8 | 5 | | poly(I) | -153 | -75 | -70 | 177 | 60 | 80 | 10 | -14 | -13 | -11 | 15 | - 3 | The left hand part of this table lists the final values of the conformation angles in the present study. The right hand part lists the differences between these values and the earlier studies cited in the text. It should be noted that the earlier studies used a variety of different methods and data and that comparisons must be made with this in mind. Table III: hydrogen-bond lengths (nm). For notation see Table IV. | • | UAU-11 | UAU-12 | UAAU | dCdIdC | dTdAdT | IAI | |--------------|--------|--------|------|--------|--------|------| | N1 A - N3 W' | 0.28 | 0.28 | 0.28 | 0.28 | 0.28 | - | | N1 A - N1 W | - | - | - | - | - | 0.28 | | N6 A - O4 W | 0.30 | 0.29 | 0.30 | - | 0.31 | - | | N6 A - 06 W | - | - | - | - | - | 0.30 | | 06 A - N4 W | - | - | - | 0.29 | - | - | | N7 A - N3 H | 0.30 | 0.29 | 0.30 | 0.30 | 0.30 | - | | N7 A - N1 H | - | - | - | - | - | 0.29 | | N6 A - O4 H | 0.27 | 0.29 | 0.27 | - | 0.29 | - | | 06 A - N4 H | - | - | - | 0.27 | - | - | | N6 A - O6 H | - | - | - | - | - | 0.29 | van der Waals radii of the two atoms. The bracketed figures show these differences. Also shown are the final values (Σ) of the first summation of equation 1: these are on an arbitrary scale but show the relative stereochemical acceptability of the different structures. Clearly the 12-fold $poly(U) \cdot poly(A) \cdot poly(U)$ model is much less satisfactory than the others. This structure has always proved awkward to modelbuild using standard assumptions, and it may well be that some distortion of the sugar rings from the standard C3-endo shape is present in this system. Of the other models a common feature of all except the all- | _ | UAU-11 | UAU-12 | UADU | dCdIdC | dTdAdT | IAI | |--------------------------|------------|------------|------------|------------|------------|-----| | V-strand | | | | | | | | 23 cW - 04 cW | | 0.27(0.03) | | | | | | 25 cW - 01 cW | | 0.27(0.03) | | | | | | 04 cW-HC6bW | | - | 0.23(0.02) | 0.23(0.02) | | | | C2 s W - C5 s W* | | 0.28(0.04) | | , , | | | | C2 s W - HC5 s W* | | 0.19(0.08) | | | 0.24(0.03) | | | 05 sW-C6 bW | 0.27(0.03) | 0.27(0.03) | 0.27(0.03) | 0.27(0.03) | 0.27(0.03) | | | D6 sW - C5 cW* | | 0.25(0.05) | | | | | | 06 sW - HC5 cW* | 0.22(0.03) | 0.15(0.10) | 0.23(0.02) | | | | | 1C2 s W - C6 b W* | 0.25(0.02) | 0.25(0.02) | 0.24(0.03) | | 0.19(0.03) | | | IC2 s W - HC6 b W* | 0.19(0.03) | 0.18(0.04) | 0.19(0.03) | 0.19(0.03) | | | | A-strand/H-strand | | | | | | | | 02 cA - 02 bH | 0.23(0.05) | 0.23(0.05) | 0.23(0.05) | 0.26(0.02) | 0.23(0.05) | | | 05 s H - 02 c A* | | 0.25(0.03) | | | | | | I-strand | | | | | | | | D4 с H - НС6 b Н | 0.22(0.03) | | 0.22(0.03) | 0.22(0.03) | 0.23(0.02) | | | 1C5 s H - O6 s H* | ` ' | 0.21(0.04) | • • | • • | , , | | | 05 sH - C6 bH | 0.27(0.03) | 0.27(0.03) | 0.27(0.03) | 0.27(0.03) | 0.27(0.03) | | | HC2 s H - C6 b H | | 0.24(0.03) | - | | | | | HC2 s H - HC6 b H | | 0.19(0.03) | | | | | | A-strand | | | | | | | | HC5 c A - 06 s A* | | 0.21(0.04) | Table IV: Short contacts (nm) in the models. A indicates the central strand, W the Watson-Crick paired strand and H the Hoogsteen strand. The letters c, s and b signify chain, sugar purine $poly(I) \cdot poly(A) \cdot poly(I)$ is the contact between the phosphate O2 on the A strand and the base O2 on the H strand. Although this too may be an artefact of the standard assumptions, it has been shown that this interaction contributes to the anomalous infra-red spectrum from the base oxygen atoms of triple-stranded complexes, 12 and it may therefore be at least partly a real feature of these molecules. Generally, however, these models are stereochemically acceptable (with the exception of 12-fold poly(U) poly(A) poly(U)): much more so than those refined against X-ray data, whilst differing not greatly from the latter. We therefore conclude that this method is a valid and useful one for constructing such models. Atomic coordinates of all six models are given in Table V, and a view perpendicular to the helix axis of a typical structure is shown in Figure 3. We would further predict that models similar to those we have built for the pyrimidine:purine:pyrimidine systems would be possible and indeed probable for any such complexes. None of the DNA strands appears to have any serious interactions at the site of the ribose O6 atom, and it would seem therefore | Poly(U)·Poly(dA)·Poly(U) (11-Fold Helix) | | | | | | | | | | | | | | | | |--|--|--|--|--|--|--|---|---|--|--|--|---|---|---|--| | | x | · Y | z | R | • | x | Y | Z Z | R | • | x | Y | z | R | • | | 01
P
02
03
04 | .1294
.1392
.1545
.0259
.2754 | 9204
8654
9786
7740
7817 | .0701
.2200
.3140
.2469
.2141 | .9295
.8765
.9908
.7744
.8288 | -82.00
-80.86
-81.03
-88.08
-70.59 | .1579
.1818
.0635
.2223
.3057 | .9458
.9011
.8268
1.0185
.8012 | 0327
1845
2335
2650
1689 | .9589
.9193
.8293
1.0424
.8575 | 80.52
78.60
85.61
77.69
69.11 | 8224
7538
8477
7002
6328 | .4595
.4445
.4894
.3075
.5485 | 2509
3946
4998
4102
3828 | .9421
.8751
.9789
.7647
.8374 | 150.81
149.47
150.00
156.29
139.08 | | C1
C2
C3
C4
C5
O5 | .5218
.5937
.5273
.5079
.3965
.4764
.7302 | 5293
5300
6487
7469
8481
6614
5572 | .0673
.2018
.2714
.1559
.1732
.0421 | .7433
.7959
.8360
.9032
.9362
.8151 | -45.41
-41.76
-50.89
-55.78
-64.95
-54.23
-37.35 | .5251
.6052
.5540
.5358
.4351
.4899 | .5180
.5236
.6535
.7427
.8550
.6511 | 0524
1820
2442
1214
1356
0178 | .7376
.8003
.8567
.9159
.9593
.8148 | 44.61
40.87
49.71
54.19
63.03
53.04 | 3318
2982
4244
5341
6623
4731
2850 | .7201
.7794
.7466
.7653
.6881
.7179
.9193 | 2277
3641
4438
3390
3631
2154
3462 | .7929
.8345
.8587
.9332
.9550
.8598 | 114.74
110.94
119.61
124.91
133.91
123.39
107.23 | | N1
C2
N3
C4
C5
C6
N7
C8
N9
N6
O2 | .4038
.4281
.3163
.1856
.1702
.2771
 | 4385
3055
2244
2644
4058
469

2608
1824 | .0630
.0385
.0352
.0540
.0790
.0827 | .5961
.5259
.3879
.3230
.4400
.5602

 | -47.36
-35.51
-35.36
-54.94
-67.25
-60.35

-25.78
-62.84 | .3118
.4356
.4830
.3860
.2551
.2155
.1859
.2756
.3995 | .0548
.1003
.2217
.3052
.2745
.1417
.3869
.4805
.4385 | .0077
.0260
.0082
0344
0579
0356
1009
1020
0630 | .3165
.4470
.5314
.4921
.3747
.2579
.4292
.5539
.5932 | 9.97
12.96
24.65
38.33
47.10
33.32
64.34
60.16
47.66
47.21 | 2818
1512
1084
1836
3194
3636
 | . \$810
. \$664
. 4361
. 3221
. 3476
. 4733
 | 2089
1688
1524
1723
2142
2309

-1487
1544 | .6457
.5862
.4494
.3708
.4721
.5969
 | 115.87
104.95
103.96
119.69
132.58
127.53 | | | Poly(dT) -Poly(dA) -Poly(dT) (12-Fold Helix) | | | | | | | | | | | | | | | | | x | Y | z | R | • | x | Y | Z | R | • | x | Y | Z | R | • | | 01
P
02
03
04 | .1823
.1814
.1905
.0662
.3174 | 9346
8757
9865
7843
7914 | .0544
.2031
.3008
.2197
.2047 | .9522
.8943
1.0047
.7870
.8527 | -78.96
-78.30
-79.07
-85.18
-68.15 | .2770
.2883
.1618
.3333
.4046 | .9669
.9182
.8530
1.0307
.8088 | 0185
1705
2112
2555
1601 | 1.0058
.9624
.8683
1.0833
.9043 | 74.01
72.57
79.26
72.08
63.43 | 7287
6757
7656
6533
5349 | .6505
.6176
.6787
.4719
.6937 | 1657
3130
4134
3265
3137 | .9768
.9154
1.0232
.8060
.8760 | 138.25
137.57
138.44
144.16
127.64 | | C1
C2
C3
C4
C5 | .5722
.6300
.5570
.5494
.4369
.5297 | 5278
5354
6571
7494
8509
6582 | .0740
.2149
.2714
.1498
.1507
.0378 | .7784
.8268
.8614
.9292
.9565
.8449 | -42.69
-40.36
-49.72
-53.75
-62.82
-51.18 | .6079
.6803
.6350
.6307
.5376 | .5064
.5105
.6456
.7319
.8514 | 0572
1913
2465
1204
1254
0168 | .7912
.8506
.9056
.9662
1.0070
.8671 | 39.80
36.88
45.47
49.25
57.73
47.62 | 1895
1573
2949
3867
5306
3258 | .7881
.8411
.8387
.8792
.8328
.8170 | 1757
3150
3813
2659
2766
1490 | .8106
.8557
.8891
.9605
.9875
.8796 | 103.52
100.59
109.37
113.74
122.50
111.74 | | N1
C2
N3
C4
C5
C6
N7
C8
N9
N6
O2
O4
Me | . 4551
. 4816
. 3708
. 2388
. 2211
. 3272
 | 4363
3032
2216
2611
4026
4843
 | .0622
.0408
.0305
.0394
.0619
.0724
 | .6305
.5692
.4319
.3539
.4594
.5845
 | -43.79
-32.19
-30.87
-47.55
-61.23
-55.96
 | . 3666
. 4944
. 5490
. 4555
. 3214
. 2740
. 2575
. 3535
. 4765
. 1449 | .0562
.0921
.2108
.3029
.2825
.1517
.4015
.4887
.4364 | 0040
.0071
0081
0393
0543
0356
0864
0897
0622
0473 | . 3709
. 5029
. 5881
. 5470
. 4279
. 3132
. 4770
. 6031
. 6461
. 1865 | 8.72
10.56
21.01
33.63
41.32
28.97
57.33
54.12
42.48
38.98 | 1701
0434
0293
1289
2583
2749

0509
1041
3723 | .6410
.5973
.4605
.3662
.4217
.5544

.6730
.2461 | 1616
1313
1191
1343
1661
1785
 | . 6632
. 5989
. 4614
. 3882
. 4945
. 6188
 | 104.86
94.16
93.64
109.39
121.49
116.37
 | | | | | | | | P | oly(I)·F | oly(A).F | | | | | | | | | | x | Y | z | · R | • | x | Y | z | R | • | x | Y | Z | R | φ | | 01
P
02
03
04 | .0535
.0604
.0602
0453
.2038 | 9875
9378
-1.0547
8371
8671 | .0274
.1794
.2702
.2036
.1831 | .9889
.9398
1.0564
.8383
.8908 | -86.90
-86.32
-86.73
-93.10
-76.77 | .0721
.0825
0267
.0910
.2228 | .9976
.9498
.8544
1.0679
.8728 | 0206
1729
2026
2616
1723 | 1.0002
.9533
.8548
1.0718
.9008 | 85.87
85.03
91.79
85.13
75.68 | 9938
9282
-1.0341
8396
8400 | .2225
.2292
.2481
.1124
.3622 | 1615
3073
4089
3274
2962 | 1.0184
.9561
1.0635
.8471
.9148 | 167.38
166.13
166.51
172.38
156.67 | | C1
C2
C3
C4
C5
O5 | .4751
.5451
.4675
.4406
.3203
.4183 | 6330
6462
7613
8521
9435
7592
6844 | .0558
.1907
.2545
.1344
.1464
.0244 | .7915
.8454
.8934
.9592
.9964
.8668 | -53.11
-49.85
-58.45
-62.66
-71.25
-61.14
-45.23 | .4871
.5590
.4855
.4599
.3425
.4337
.6936 | .6297
.6430
.7613
.8510
.9461
.7570 | 0530
1868
2496
1284
1402
0201
1581 | .7962
.8520
.9030
.9673
1.0062
.8724
.9691 | 52.28
49.00
57.47
61.61
70.10
60.19
44.30 | 5918
5845
7004
8047
9066
7256
6109 | .6149
.6814
.6139
.6003
.4896
.5723 | 1706
3077
3808
2698
2881
1506
2880 | .8534
.8977
.9313
1.0039
1.0304
.9242
1.0219 | 133.90
130.62
138.77
143.28
151.63
141.74
126.71 | | N1
C2
N3
C4
C5
C6
N7
C8
N9
N6 | . 3603
. 4811
. 4996
. 3838
. 2601
. 2380
. 1637
. 2333
. 3658 | 1444
2065
3348
4006
3436
2075
4396
5532
5532 | .0061
.0010
.0153
.0361
.0422
.0273
.0647
.0717 | .3881
.5235
.6014
.5547
.4310
.3158
.4691
.6004
.6455 | -21.84
-23.23
-33.83
-46.23
-52.88
-41.08
-69.57
-67.13
-55.47 | . 3566
. 4733
. 4989
. 3857
. 2591
. 2434
. 1685
. 2421
. 3749
. 1251 | .1356
.1993
.3275
.3966
.3466
.2081
.4486
.5553
.518 | 0034
.0036
0104
0349
0451
0284
0711
0757
0547 | . 3815
. 5136
. 5968
. 5532
. 4327
. 3203
. 4792
. 6058
. 65506 | 20.82
22.84
33.29
45.80
53.23
40.52
69.41
66.45
54.82
49.33 | 1210
1698
2947
3717
3283
1961
4330
5380
5380 | .4532
.5799
.6108
.5013
.3722
.3371
.2850
.3655
.4959 | 0889
0952
1171
1332
1279
1048
1486
1659
1570 | . 4691
.6043
.6781
.6240
.4963
.3899
.5184
.6504 | 104.95
106.32
115.76
126.56
131.41
120.18
146.64
145.81
135.41 | dues may be generated by applying to the listed coordinates a translation of h along and a rotation of t about the helix axis, z. The accuracy of these coordinates is not necessarily that | | Poly(U) · Poly(A) · Poly(U) (11 · Fold Helix) | | | | | | | | | | | | | | | |--|--|--|--|--|--|--|--|--|--|--|--|--|--|--|--| | | x | , Y | Z | R | • | x | Y | z | R | • | x | Y | Z | R | • | | 01
P
02
03
04 | .0844
.0962
.1035
0114
.2374 | 9186
8610
9731
7622
7862 | .0808
.2297
.3261
.2535
.2236 | .9225
.8664
.9785
.7623
.8212 | -84.75
-83.63
-83.93
-90.86
-73.20 | .2544
.2728
.1482
.3224
.3880 | .9419
.8937
.8292
1.0062
.7836 | 0427
1941
2413
2764
1784 | .9757
.9344
.8423
1.0566
.8744 | 74.89
73.02
79.87
72.23
63.66 | 7653
6972
7847
6584
5658 | .5500
.5269
.5809
.3848
.6174 | 2576
4004
5069
4146
3879 | .9425
.8739
.9763
.7626
.8375 | 144.30
142.92
143.49
149.69
132.50 | | C1
C2
C3
C4
C5
O5 | .5009
.5696
.4944
.4714
.3536
.4479
.7047 | 5503
5541
6677
7656
8596
6795
5900 | .0747
.2108
.2799
.1648
.1805
.0496 | .7441
.7947
.8308
.8991
.9295
.8139 | -47.69
-44.21
-53.48
-58.38
-67.64
-56.61
-39.94 | .5815
.6645
.6264
.6137
.5237
.5576
.8006 | .4879
.4802
.6108
.7072
.8271
.6250 | 0568
1846
2539
1358
1578
0293
1454 | .7591
.8198
.8749
.9364
.9789
.8376 | 40.00
35.85
44.28
49.05
57.66
48.26
31.04 | 2493
2087
3372
4450
5805
3902
1809 | .7578
.8116
.7915
.8230
.7596
.7707 | 2324
3692
4494
3457
3699
2211
3525 | .7977
.8380
.8604
.9355
.9560
.8639 | 108.21
104.42
113.07
118.40
127.39
116.85
100.79 | | N1
C2
N3
C4
C5
C6
N7
C8
N9
N6
O2 | .3888
.4219
.3155
.1822
.1574
.2590

 | 4524
3214
2336
2652
4050
4926
 | .0669
.0418
.0353
.0514
.0773
.0841 | .5965
.5304
.3926
.3217
.4346
.5566

.6073
.2018 | -49.32
-37.30
-36.51
-55.51
-68.76
-62.26

-27.87
-61.71 | .3300
.4574
.5147
.4250
.2918
.2412
.2321
.3295
.4496 | .0443
.0791
.1960
.2876
.2682
.1391
.3861
.4718
.4193
.1059 | .0035
.0212
.0034
0385
0613
0390
1036
1051
0669 | . 3329
. 4641
. 5508
. 5131
. 3963
. 2785
. 4505
. 5754
. 6148
. 1545 | 7.64
9.81
20.85
34.09
42.59
29.97
58.99
55.07
43.01 | 2145
0858
0573
1446
2773
3078

 | .6143
.5862
.4523
.3469
.3864
.5159

.6725
.2309 | 2118
1727
1546
1719
2131
2314

1548
1527 | .6507
.5925
.4559
.3758
.4756
.6007
 | 109.25
98.33
97.22
112.63
125.67
120.82 | | | | | | | | P | | oly(A)·P | | | | | | | | | | х | Y | 2 | R | • | x | (12-F | old Heli:
Z | k)
R | φ | x | Y | Z | R | ¢ | | 01
P
02
03
04 | .1493
.1504
.1447
.0453
.2946 | 9219
8593
9677
7556
7901 | .0955
.2427
.3432
.2534
.2465 | .9340
.8723
.9785
.7570
.8432 | -80.80
-80.07
-81.50
-86.57
-69.55 | .3260
.3426
.2155
.3967
.4532 | .9729
.9208
.8604
1.0295
.8066 | 0532
2036
2495
2881
1854 | 1.0261
.9824
.8870
1.1033
.9252 | 71.48
69.59
75.94
68.93
60.67 | 6637
6113
7002
5919
4692 | .7118
.6698
.7270
.5232
.7430 | 2314
3767
4803
3821
3815 | .9732
.9069
1.0094
.7900
.8788 | 132.99
132.39
133.92
138.52
122.27 | | C1
C2
C3
C4
C5
O5 | .5620
.6144
.5305
.5201
.4002
.5110 | 5330
5436
6588
7514
8442
6602
5805 | .0904
.2332
.2882
.1670
.1649
.0537 | .7745
.8203
.8459
.9139
.9343
.8349 | -43.48
-41.50
-51.15
-55.31
-64.63
-52.26
-37.70 | .6412
.7158
.6769
.6741
.5861
.6227 | .4979
.4963
.6319
.7210
.8440
.6336 | 0683
2013
2600
1357
1445
0310
1709 | .8118
.8710
.9260
.9870
1.0275
.8884
.9860 | 37.83
34.74
43.03
46.92
55.22
45.50
29.97 | 1235
0829
2179
3107
4570
2584
0287 | .8110
.8574
.8622
.9124
.8756
.8499
.9875 | 2117
3512
4225
3118
3265
1910
3371 | .8203
.8614
.8893
.9639
.9877
.8883 | 98.66
95.52
104.18
108.81
117.56
106.91
91.67 | | N1
C2
N3
C4
C5
C6
N7
C8
N9
N6
O2 | .4526
.4898
.3858
.2511
.2220
.3212
 | 4331
3030
2133
2423
3815
4708
 | .0740
.0504
.0357
.0425
.0676
.0823
 | .6265
.5759
.4409
.3490
.4414
.5700 | -43.74
-31.74
-28.93
-43.98
-59.81
-55.70

-23.82
-42.57 | .3807
.5096
.5693
.4803
.3458
.2927
.2874
.3870
.5072
.1626 | .0596
.0907
.2065
.3014
.2860
.1578
.4064
.4895
.4331
.1283 | 0072
.0055
0120
0477
0649
0435
1017
1056
0740 | .3854
.5176
.6056
.5670
.4487
.3325
.4978
.6240
.6669
.2071 | 8.90
10.09
19.94
32.11
39.60
28.32
54.73
51.68
40.50
38.28 | 1148
.0078
.0120
0936
2182
2251

.1069
0777 | .6634
.6120
.4749
.3874
.4508
.5838 | 1927
1582
1415
1562
1925
2094
 | . 6733
. 6120
. 4751
. 3985
. 5008
. 6257
 | 99.82
89.27
88.55
103.59
115.83
111.08 | | | | | | | | Pol | | ly(dI)·F | | | | | | | | | | x | Y | z | R | φ • | x | (11-F0
Y | ld Helix
Z | r R | ф | x | Y | Z | ĸ | ф | | 01
P
02
03
04 | .1335
.1455
.1660
.0309
.2798 | 9155
8592
9715
7703
7725 | .0484
.1977
.2920
.2265
.1879 | .9252
.8714
.9856
.7709
.8216 | -81.70
-80.39
-80.30
-87.70
-70.09 | .2217
.2376
.1142
.2809
.3572 | .9605
.9152
.8471
1.0309
.8094 | 0174
1702
2151
2520
1594 | .9857
.9455
.8548
1.0685
.8847 | 77.00
75.45
82.32
74.76
66.18 | 8055
7364
8280
6872
6123 | .4692
.4554
.5058
.3171
.5551 | 2144
3581
4628
3765
3428 | .9322
.8659
.9702
.7568
.8265 | 149.78
148.27
148.58
155.23
137.81 | | C1
C2
C3
C4
C5
O5 | .5301
.5985
.5307
.5147
.4032
.4860
.7358 | 5169
5202
6405
7365
8382
6487
5465 | .0578
.1942
.2596
.1416
.1538
.0289 | .7404
.7930
.8318
.8985
.9302
.8105
.9166 | -44.28
-41.00
-50.36
-55.05
-64.31
-53.16
-36.60 | .5631
.6500
.6080
.5876
.4928
.5321 | .5249
.5165
.6430
.7425
.8573
.6615 | 0407
1660
2408
1267
1556
0191
1228 | .7698
.8302
.8850
.9469
.9889
.8490 | 42.99
38.47
46.61
51.64
60.11
51.19
33.84 | 3004
2716
4020
5065
6374
4411
2545 | .7219
.7781
.7472
.7702
.6958
.7233 | 2057
3445
4176
3083
3254
1869
3296 | .7819
.8242
.8485
.9218
.9437
.8472 | 112.59
109.24
118.28
123.33
132.49
121.38
105.49 | | N1
C2
N3
C4
C5
C6
N7
C8
N9
O6
O2
N4 | .4120
.4366
.3312
.2060
.1784
.2853

.5535 | 4265
2913
2058
2508
3894
4733
 | .0522
.0303
.0244
.0397
.0626
.0679 | .5931
.5248
.3899
.3245
.4284
.5526
 | -45.99
-33.71
-31.85
-50.59
-65.38
-58.92

-24.60
-58.25 | .3379
.4676
.5157
.4207
.2890
.2421
.2200
.3132
.4346
.1288 | .0756
.1101
.2308
.3191
.2901
.1555
.4034
.4989
.4499 | .0021
.0216
.0077
-0292
-0501
-0331
-0867
-0867
-0522
-0477 | .3462
.4804
.5650
.5280
.4095
.2878
.4595
.5890
.6255
.1701 | 12.61
13.25
24.12
37.18
45.11
32.71
61.40
57.88
45.99
40.80 | 2530
1199
0729
1538
2915
3361

0480
1079 | . 5818
. 5645
. 4383
. 3326
. 3484
. 4755
 | 1865
1507
1326
1489
1858
2036
 | .6345
.5771
.4444
.3665
.4543
.5823
 | 113.50
101.99
99.44
114.81
129.91
125.25
 | implied by the precision to which they are quoted. Because of the method used there is very strong correlation between the errors in coordinates of atoms closely joined by chemical bonds, and this correlation falls off as more variable structural features intervene between the atoms considered. For this reason and others concerned with the statistical properties of the system, no error estimates are presented here. A fuller discussion is in preparation (ref. 19). Figure 3: View perpendicular to the helix axis of a typical triplex structure, the poly(dT) poly(dA) poly(dT) of Selsing and Arnott (ref. 4). Notice how the third strand (shown shaded) fits in the major groove of a quite conventional A-DNA type structure. that this conformational class would be available to DNAs, RNAs, and DNA-RNA hybrids: for example the triple-stranded complex of poly d(A-G) poly d(C-T) and poly(C-U). 13 No biological role for such triple-stranded complexes has yet been demonstrated, but we would be surprised if analogous structures were not exploited by living systems. It has indeed been suggested that DNA-RNA triplexes of this sort may serve to maintain chromosomes in folded conformations because folded E. coli chromosomes relax after treatment with ribonuclease speci- fic for single-stranded RNA. 14,15 As shown in Figure 4, poly(Py) single-stranded RNA could form triplexes with two separated poly(Pu)·poly(Py) tracts in the chromosome; the bounded duplex would then loop-out. The triplex regions of this structure would be required to adopt A-type conformations; presumably the looped-out duplex would retain the B-DNA geometry, with kinks occurring at the junction between the A and B regions. Of course this scheme requires the presence of sizable oligo(Pu)·oligo(Py) tracts in the chromosome; it is noteworthy, therefore, that long sequences (\sim 750 base pairs on the average) of this type are found in the Drosophila genome. 16,17 The discovery 18 that small RNA oligonucleotides are implicated in the initiation of DNA replication in the bacteriophage λ invites speculation that three-stranded structures are involved in this process. The geometry of three-stranded initiator regions, however, would preclude primer roles for these oligonucleotides since the 3'-hydroxyl group of the RNA, located in the groove of the DNA duplex (Figure 1), is not positioned correctly for chain elongation, since the oligo RNA would have the same 3'-5' polarity as the poly(purine) nucleotide stretch to which it would be attached. Rather we envisage the oligopyrimidine nucleotide tracts of such RNAs acting as inducers of an A conformation in a DNA that would normally have a B secondary structure. Triplex formation would require the local conformation to be A. The region of A conformation might well extend beyond the triplex region to a nearby site and enhance polymerase binding. In conclusion, it seems to us that this method is a valid one for the postulation and evaluation of the structures of these interesting polynucleotides, a role played at present by no more direct method. The paucity of X-ray data arises in part from the computational difficulty of extracting structural information from 'continuous' diffraction, but more fundamentally from the inherent disorder present in synthetic and, to an even greater extent, biological polynucleotide materials. It is of some importance then that such methods as the present one be developed. ### ACKNOWLEDGEMENT This work was supported by a grant (GM17371) from the National Institutes of Health of the USA. # REFERENCES - Present address: Fritz-Haber Institut der Max-Planck-Gesellschaft, 1 Berlin 33, Faradayweg 4-6, Germany - 2 Present address: Department of Biochemistry, 420 Henry Mall, University of Wisconsin, Madison WI 53706, USA - Arnott, S., Chandrasekaran, R., Hukins, D.W.L., Smith, P.J.C. and Watts, L. (1974) J. Mol. Biol. 88,523-533 Arnott, S. and Selsing, E. (1974) J. Mol. Biol. 88,509-521 Arnott, S. (1970) Prog. Biophys. Molec. Biol. 21,267-319 Guss, J.M., Hukins, D.W.L., Smith, P.J.C., Winter, W.T., 3 - 5 - 6 Arnott, S., Moorhouse, R. and Rees, D.A. (1975) J. Mol. Biol. 95,359-384 - 7 Alden, C.J. and Arnott, S. (1975) Nucl. Acids Res. 2,1701-1717 - 8 - Arnott, S. and Bond, P. (1973) Science 181,58-69 Arnott, S. and Bond, P. (1973) Nature New Biol. 244,99-101 - Arnott, S., Chandrasekaran, R. and Selsing, E. (1975) in 'Structure and Conformation of Nucleic Acids and Protein-10 Nucleic Acid Interactions', M. Sundaralingam and S.T. Rao, eds., pp. 577-595, Univ. Park Press, Baltimore, Md. - 11 Arnott, S. and Hukins, D.W.L. (1972) Biochem. J. 130,453- - 12 Miles, H.T. (1964) Proc. Nat. Acad. Sci. USA 51,1104-1109 - Morgan, A.R. and Wells, R.D. (1968) J. Mol. Biol. 37,63-80 Pettijohn, D.E. and Hecht, R. (1973) Cold Spring Harbor 13 - 14 - Symp. Quant. Biol. 38,31-41 Worcel, A., Burgi, E., Robinton, J. and Carlson, C.L. (1973) Cold Spring Harbor Symp. Quant. Biol. 38,43-51 Birnboim, H.C. and Sederoff, R. (1975) Cell 5, 173-181 15 - Sederoff, R., Lowenstein, L. and Birnboim, H.C. (1975) 17 Cell 5, 183-194 - 18 Hayes, S. and Szybalski, W. (1973) Mol. Gen. Genet. 126, 275-290 - Smith, P.J.C. and Arnott, S., manuscript in preparation 19